Caracterización química del LECISAN, contribución al estudio del producto natural

Autores/as

Palabras clave:

Lecitina de soya, Polifenoles, Flavonoies, Fosfolípidos, Cromatografías de capa delgada

Resumen

Introducción: el interés actual por la lecitina de soya motiva a conocer la composición de este producto, para avalar el uso en régimen terapéutico. Objetivo: caracterizar la materia prima del suplemento nutricional LECISAN. Método: mediante un estudio analítico en el laboratorio de ciencias básicas biomédicas y el Centro de Toxicología y Biomedicina de la Universidad de Ciencias Médicas de Santiago de Cuba, entre octubre y diciembre de 2022, se identificaron los perfiles químicos de lípidos, fenoles y flavonoides, presentes en la materia prima utilizada para la fabricación del producto a través de las técnicas analíticas de separación, la cromatografía de capa delgada y el análisis espectrofotométrico. Se determinó el contenido de materia seca de acuerdo con los procedimientos referidos por la Asociación Oficial de Métodos Químicos Analíticos del 2019. Resultados: se identificó la presencia de fosfatidilcolina, fosfatidiletanolamina, fosfatidilserina y lisofosfatidilcolina en la materia prima. El contenido de sólidos totales resultó de 7mg/ml y la cuantificación total de grasas y aceites fue 0,637 g/ml. La concentración de fenoles totales fue de 9.1635 μg ácido gálico/miligramos y de flavonoides 35.14 μg quercetina/miligramos. Conclusiones: se caracterizó la materia prima del suplemento nutricional LECISAN. Los valores medios de las concentraciones existentes de los lípidos, fenoles y flavonoides son considerados niveles de referencia en el LECISAN de estos elementos en el área investigada y pueden ser considerados direcciones interesantes para futuras investigaciones.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Leidys Cala-Calviño, Universidad Médica de Santiago de Cuba

Dirección de Ciencia, tecnología e innovación, profesor asistente investigador auxiliar

Yaixa Beltrán Delgado, Centro de Estudios de Biotecnología Industrial, Facultad de Ciencias Naturales y Exactas. Universidad de Oriente, Santiago de Cuba, Cuba.

Laboratorio de química del Centro de Estudios de Biotecnología Industrial, profesor auxiliar, investigador agregado

Juan Carlos Ferrer Romero, Centro de Estudios de Biotecnología Industrial, Facultad de Ciencias Naturales y Exactas. Universidad de Oriente, Santiago de Cuba, Cuba.

Laboratorio de química del Centro de Estudios de Biotecnología Industrial,profesor instructor,investigador agregado

Onel Fong Lores, Centro de Toxicología y Biomedicina (TOXIMED), Santiago de Cuba, Cuba.

departamento de investigaciones del Centro de Toxicología y Biomedicina (TOXIMED), investigador auxiliar, profesor asistente

David Garrido Larramendi, Centro de Toxicología y Biomedicina (TOXIMED), Santiago de Cuba, Cuba.

Laboratoio de quimica analitica del Centro de Toxicología y Biomedicina (TOXIMED), Santiago de Cuba, Cuba.Aspirante a investigador,profesor instructor

Citas

1. Schuhmacher A, Wilisch L, Kuss M, Kandelbauer A, Hinder M, Gassmann OR. Efficiency of leading pharmaceutical companies - A 20-year analysis. Drug Discov Today [Internet]. 2021[citado 12 May 2023]; 26(8):1784-1789. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34022459/
2. Majolo F, Oliveira LK de, Marmitt DJ, Bustamante-Filho IC, Goettert, MI. Medicinal plants and bioactive natural compounds for cáncer treatment: Important advances for drug Discovery. Phytochem. Letters[Internet]. 2019[citado 12 May 2023]; 31:196-207. Disponible en: https://doi.org/10.1016/j.phytol.2019.04.003
3. Cala-Calviño L, Morris-Quevedo H. LECISAN® y sus potencialidades terapéuticas para el abordaje farmacológico de la obesidad. Revista Cubana de Endocrinologia [Internet]. 2022 [citado 12 May 2023]; 32 (3) Disponible en: https://revendocrinologia.sld.cu/index.php/endocrinologia/article/view/316
4. De las Heras-Polo B. Productos naturales: De la medicina tradicional a cabezas de serie para el desarrollo de nuevos fármacos del siglo XXI. An Real Acad Farm[Internet]. 2021[citado 12 May 2023]; 87(1):97-104. Disponible en: https://analesranf.com/articulo/8701_05/
5. Salem MA, Perez de Souza L, Serag A, Fernie A R, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites [Internet]. 2020[citado 12 May 2023]; 10(1):37. Disponible en: https://doi.org/10.3390/metabo10010037
6. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC; 2019
7. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology[Internet]. 1959[citado 12 May 2023]; 37(8): 911–917. Disponible en: https://pubmed.ncbi.nlm.nih.gov/13671378/
8. Hadrich B, Akremi I, Dammak M, Barkallah M, Fendri I, Abdelkafi S. Optimization of lipids’ ultrasonic extraction and production from Chlorella sp. using response surface methodology. Lipids in Health and Disease [Internet]. 2018[citado 12 May 2023]; 17(1): 1–9. Disponible en: https://lipidworld.biomedcentral.com/articles/10.1186/s12944-018-0702-z
9. Hofmann T, Barth M, Meister A, Kastritis PL, Schmidt C. Thin-Layer Chromatography and Coomassie Staining of Phospholipids for Fast and Simple Lipidomics Sample Preparation.Analysis & Sensnig [Internet]. 2021[citado 1 junio 2023]; 1(4): 171-179. Disponible en: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/anse.202100029
10. Valls JE, Bello RA, Kodaira MS. Semiquantitative analysis by thin-layer chromatography (TLC) of biogenic amines in dried, salted and canned fish products. Journal of Food Quality[Internet]. 2002[citado 12 May 2023]; 25: 165-176. Disponible en: https://doi.org/10.1111/j.1745-4557.2002.tb01016.x
11. Tamargo-Santos B, Herrera-Belén L, Bello-Alarcón A, Cuéllar A, González-Rodríguez H, Sierra-González G, Morales-González M, y Ortiz-Zamora L. Obtención de fosfolípidos a partir de la lecitina de soya (Glicine max L), para usos biomédicos. Revista Cubana de Química [Internet]. 2011[citado 12 May 2023]; XXIII(3): 5-14. Disponible en: https://www.redalyc.org/pdf/4435/443543724001.pdf
12. Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual method. Am J Enol Vitic. 1977;28 (1) :49-55.
13. Zhang Q, Yang W, Liu J, Liu H, Lv Z, Zhang C,et al. Identification of Six Flavonoids as Novel Cellular Antioxidants and Their Structure-Activity Relationship. Oxidative medicine and cellular longevity [Internet]. 2020[citado 1 jul 2023]; 4150897. Disponible en: https://doi.org/10.1155/2020/4150897
14. Panel on Food Additives and Flavourings (EFSA). Safety of use of oat lecithin as a food additive. EFSA Journal [Internet].2020 [citado 12 May 2023]; 18(11), e05969. Disponible en: https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2020.5969
15. Colina J, León M, Castañeda M, Matos A. Composición química e indicadores de calidad del frijol de soya (Glycine max) integral procesado con vapor para la alimentación de aves y cerdos. ALAN[Internet]. 2017[citado 12 May 2023];67(1): 49-55. Disponible en: https://www.alanrevista.org/ediciones/2017/1/art-7/
16. Dini I, Grumetto L. Recent Advances in Natural Polyphenol Research. Molecules (Basel, Switzerland) [Internet]. 2022 [citado 1 jul 2023]; 27(24): 8777. Disponible en: https://doi.org/10.3390/molecules27248777
17. Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules (Basel, Switzerland). [Internet]. 2021 [citado 1 jul 2023]; 26(17): 5377. Disponible en: https://doi.org/10.3390/molecules26175377
18. Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health. A Current Perspective. Int. J. Mol. Sci[Internet]. 2021[citado 12 May 2023]; 22(8): 4054. Disponible en: https://doi.org/10.3390/ijms22084054
19. Ceccarelli I, Bioletti L, Peparini S, Solomita E, Riccin C, Casini I, et al. Estrogens and phytoestrogens in body functions. Neurosci Biobehav Rev [Internet]. 2022[citado 12 May 2023]; 132:648-663. Disponible en: https://doi.org/10.1016/j.neubiorev.2021.12.007.
20. Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, et al. The Pros and Cons of Soybean Bioactive Compounds: An Overview. Food Reviews International [Internet]. 2022[citado 12 May 2023]; 1-28. Disponible en: https://doi.org/10.1080/87559129.2022.2062763.
21. Wang Q, Spenkelink B, Boonpawa R, Rietjens I. Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol. Journal of agricultural and food chemistry [Internet]. 2022[citado 12 May 2023]; 70(1): 343–352. Disponible en: https://doi.org/10.1021/acs.jafc.1c03950
22. Mijiti N, Someya A, Nagaoka I. Effects of isoflavone derivatives on the production of inflammatory cytokines by synovial cells. Experimental and therapeutic medicine[Internet]. 2021[citado 12 May 2023]; 22(5):1300. Disponible en: https://doi.org/10.3892/etm.2021.10735
23. Wu Z, Liu L. The protective activity of genistein against bone and cartilage diseases. Frontiers in pharmacology[Internet]. 2022[citado 12 May 2023];13:1016981. Disponible en: https://doi.org/10.3389/fphar.2022.1016981

Descargas

Publicado

2023-07-30

Cómo citar

1.
Cala-Calviño L, Beltrán Delgado Y, Ferrer Romero JC, Fong Lores O, Garrido Larramendi D. Caracterización química del LECISAN, contribución al estudio del producto natural. Rev. Cub. Tecnol. Salud. [Internet]. 30 de julio de 2023 [citado 22 de abril de 2025];14(3):e4083. Disponible en: https://revtecnologia.sld.cu/index.php/tec/article/view/4083

Número

Sección

Artículos Originales